
Virtual	Method	Dispatch	
in	C++



What	are	virtual	methods?

• Virtual	methods	are	methods	that	can	be	
overridden	by	subclasses	
• When	a	virtual	method	is	invoked,	the	version	of	
the	method	that	is	executed	is	determined	by	
which	the subclass	of	the	object	the	method	is	
invoked	on
• This	is	in	contrast	to	non-virtual	methods	which	
cannot	be	overridden,	but	instead	“shadowed”
• Unlike	C++,	in	Java	methods	are	virtual	by	default



What	are	virtual	methods?

• Virtual	method	calls	incur	a	small	performance	
penalty	because	they	are	calculated	jumps	
compared	to	unconditional	call	instructions



Non-virtual	method	example	(aka	
shadowing)

#include <cstdio>

class Base {
public:

virtual ~Base() { }

virtual void virtual_dispatch_method() {
puts("Base::virtual_dispatch_method");

}

void static_dispatch_method() {
puts("Base::static_dispatch_method");

}
};

class StaticDerived : public Base {
public:

void static_dispatch_method() {
puts("StaticDerived::static_dispatch_method");

}
};

void call_static_dispatch(Base *obj) {
obj->static_dispatch_method();

}

void call_static_dispatch_derived(StaticDerived *obj) {
obj->static_dispatch_method();

}

Base base;
StaticDerived derived;
call_static_dispatch(&base);
call_static_dispatch(&derived);
call_static_dispatch_derived(&derived);

Output:

Base::static_dispatch_method
Base::static_dispatch_method
StaticDerived::static_dispatch_method



Virtual	method	example
#include <cstdio>

class Base {
public:

virtual ~Base() { }

virtual void virtual_dispatch_method() {
puts("Base::virtual_dispatch_method");

}

void static_dispatch_method() {
puts("Base::static_dispatch_method");

}
};

class VirtualDerived : public Base {
public:

virtual void virtual_dispatch_method() {
puts("VirtualDerived::virtual_dispatch_method");

}
};

void call_virtual_dispatch(Base *obj) {
obj->virtual_dispatch_method();

}

Base base;
VirtualDerived derived;
call_virtual_dispatch(&base);
call_virtual_dispatch(&derived);

Output:

Base::virtual_dispatch_method
VirtualDerived::virtual_dispatch_method



Vtables

• A	virtual	table,	or	vtable,	is	a	global	structure	
created	automatically	for	each	class	that	contains	
virtual	methods
• Vtables are	used	in	the	implementation	of	virtual	
method	calls
• All	instances	of	classes	with	virtual	methods	
contain	a	pointer	to	that	class’s	vtable as	a	hidden	
field	(and	in	the	case	of	multiple-inheritance,	may	
contain	multiple	vtable pointers)



VTable Example
#include <cstdio>

class HasNoVirtualMethods {
void* field;

};

class HasVirtualMethods {
void* field;
virtual ~HasVirtualMethods();

};

printf("void*: %d\n", sizeof(void*));
printf("HasNoVirtualMethods: %d\n", sizeof(HasNoVirtualMethods));
printf("HasVirtualMethods: %d\n", sizeof(HasVirtualMethods));

Output:

8
8
16



C++	name	mangling

• In	order	to	allow	overloading	functions,	C++	uses	to	
a	technique	called	“name	mangling”

• Information	about	the	signature	of	the	function	is	
incorporated	into	the	mangled	name	to	create	a	
unique	linker-symbol	for	each	overload

• For	example,	GCC mangles
MyClass::some_method(int,char)
into	__ZN7MyClass11some_methodEic



C++	name	mangling

• Not	all	compilers	use	the	same	name	mangling	
scheme
• Clang,	GCC,	and	ICC	all	use	the	same	scheme,	which	is	
part	of	the	itanium abi
• MSVC	uses	its	own	scheme

• Functions	declared	extern “C” do	not	have	their	
linker-symbols	mangled
• This	allows	them	to	be	called	from	C	code
• However	they	cannot	be	overloaded



c++filt

• c++filt is	a	command-line	utility	for	de-mangling	
mangled	GCC-produced	C++	symbols

• Examples:
$ c++filt __ZN24AppleBusControllerCS84098_spiReadEhhPh
AppleBusControllerCS8409::_spiRead(unsigned char, unsigned 
char, unsigned char*)
% c++filt __ZTV23com_CalDigit_UserClient
vtable for com_CalDigit_UserClient


