
 1

Code Generation for the x86 Architecture

EECS 665 Compiler Construction
Dr. Kulkarni

Marianne Jantz

 2

Code Generation Framework for
Lab 9

test.c
(C file)

test.t
(csem IR)

test.t.s
(x86 of test.t)

test
executable

test.c
(GCC IR)

test.c
(x86)

Linking

 3

csem Intermediate Language
Quadruples

● x := y op z
● Operate on y and z and place result in x

● x := global name
● Yield address of global identifier name

● x := local n
● Yield address of local identifier n

● x := param n
● Yield address of parameter n

● x := c
● Yield value of constant value c

● x := s
● Yield address of character string s

 4

csem Intermediate Language
Quadruples (cont.)

● formal n
● Allocate the formal having n bytes

● func name
● Begin function name

● fend
● End function

● bgnstmt n
● Beginning of statement at line n

name denotes an identifier from the C program. n denotes an integer. c
denotes a C integer constant. s denotes a string enclosed by double
quotes. x, y, and z denote quadruple temporaries. op denotes any of the
C operators.

 5

Assembly Generated for test.c by
GCC Compiler

movl $6, 4(%esp)

movl $12, (%esp)

call tstadd

movl $.LC1, %edx

movl %eax, 4(%esp)

movl %edx, (%esp)

call printf

Assembly generated by test.c's line 18:

printf("12 + 6 = %d\n", tstadd(12,6));

 6

Assembly Generated for test.t by
csem Intermediate Language Parser
 .text

 .globl tstadd

tstadd:

 push %ebp

 movl %esp, %ebp

 subl $256, %esp

 movl 264(%esp), %eax

 addl 268(%esp), %eax

 movl %eax, 272(%esp)

 movl 272(%esp), %eax

 addl $256, %esp

 pop %ebp

 ret

Assembly generated by test.t's tstadd()
definition:

func tstadd
formal 4
formal 4
bgnstmt 1
t1 := param 1
t2 := param 2
t3 := t1 +i t2
reti t3
fend

 7

Assembly Generated for test.c by
GCC Compiler

movl $6, 4(%esp)

movl $12, (%esp)

call tstadd

movl $.LC1, %edx

movl %eax, 4(%esp)

movl %edx, (%esp)

call printf

Move arguments of tstadd() onto
the stack to setup function call.
Arguments are stored from right
to left

The supporting routines of the
provided source code will be able to
use the stack offset to locate the
arguments' position on the stack

 8

Assembly Generated for test.c by
GCC Compiler

movl $6, 4(%esp)

movl $12, (%esp)

call tstadd

movl $.LC1, %edx

movl %eax, 4(%esp)

movl %edx, (%esp)

call printf

Call function tstadd(), push callee's
instruction pointer onto the stack

 9

Assembly Generated for test.t by
csem Intermediate Language Parser
 .text

 .globl tstadd

tstadd:

 push %ebp

 movl %esp, %ebp

 subl $256, %esp

 movl 264(%esp), %eax

 addl 268(%esp), %eax

 movl %eax, 272(%esp)

 movl 272(%esp), %eax

 addl $256, %esp

 pop %ebp

 retthe

When the head of a function in parsed,
a function header is printed in assembly

First, the previous frame pointer is saved
(the callee's stack frame)

Next, the frame pointer is
initialized to the bottom of stack, which
grows downward. Now, we have a new
local stack frame

Finally, we allocate space on the stack for
the current routine

 10

Assembly Generated for test.t by
csem Intermediate Language Parser
 .text

 .globl tstadd

tstadd:

 push %ebp

 movl %esp, %ebp

 subl $256, %esp

 movl 264(%esp), %eax

 addl 268(%esp), %eax

 movl %eax, 272(%esp)

 movl 272(%esp), %eax

 addl $256, %esp

 pop %ebp

 retthe

Use the stack pointer to access arguments
off the stack

Perform the addition operation on the
parameters

The csem binary operation is parsed and this
code is generated. The first operator is
loaded from memory and placed in register
EAX. Then, the second operator is loaded
from memory and added to the value
already in EAX

 11

Assembly Generated for test.t by
csem Intermediate Language Parser
 .text

 .globl tstadd

tstadd:

 push %ebp

 movl %esp, %ebp

 subl $256, %esp

 movl 264(%esp), %eax

 addl 268(%esp), %eax

 movl %eax, 272(%esp)

 movl 272(%esp), %eax

 addl $256, %esp

 pop %ebp

 retthe

When parsing binary operations, the
the result of the operation is left in register
EAX

When the assignment of a temporary is
parsed, we can use this fact to make sure
that we store the results in the correct local
variable using a movl instruction and the
stack offset of the routine

 12

Assembly Generated for test.t by
csem Intermediate Language Parser
 .text

 .globl tstadd

tstadd:

 push %ebp

 movl %esp, %ebp

 subl $256, %esp

 movl 264(%esp), %eax

 addl 268(%esp), %eax

 movl %eax, 272(%esp)

 movl 272(%esp), %eax

 addl $256, %esp

 pop %ebp

 retthe

Here, the integer return operation is parsed
and code is generated to move the correct
return value into the EAX register (EAX is
the return value register according to cdecl
calling conventions)

 13

Assembly Generated for test.t by
csem Intermediate Language Parser
 .text

 .globl tstadd

tstadd:

 push %ebp

 movl %esp, %ebp

 subl $256, %esp

 movl 264(%esp), %eax

 addl 268(%esp), %eax

 movl %eax, 272(%esp)

 movl 272(%esp), %eax

 addl $256, %esp

 pop %ebp

 ret

After the entire function is parsed, code is
generated to restore the calling function's
stack frame – the stack is now back to the
state it was at before the tstadd() was called

 14

Assembly Generated for test.c by
GCC Compiler

movl $6, 4(%esp)

movl $12, (%esp)

call tstadd

movl $.LC1, %edx

movl %eax, 4(%esp)

movl %edx, (%esp)

call printf

The stack is setup to call the printf function,
which will print LC1, a label of an
ascii character string declared higher up in
the assembly code, and the return value of
tstadd()

 15

Where to Turn for Help?

● Assembly References (listed on lab write-up)
● GDB
● -S flag
● ASK YOUR TA!

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15

