Helpful Notes on Yacc

Evan Austin

September 23, 2014

Yacc Specification Structure

{ declarations }

%%

{ rules }

%%

{ programs }

E. Austin Notes on Yacc

September 23, 2014

2/7

Common Yacc Values

o yyparse - The parser function produced when a Yacc specification is
compiled.

o yyerror - The function called when a syntax error is detected. Default
implementation prints " Syntax error.”

o yylval - The name of the Yacc's value stack union type, as defined by
the %union keyword.

o yydebug - Flag that, when set to 1 in the a literate piece of C in the
declaration section, triggers debug output code.
Note: the Yacc specification must be compiled with the t flag to
enable debug code.

E. Austin Notes on Yacc September 23, 2014 3/7

Declarations

Possible Members of the Declaration Section:

(€]
@
(<)

Literate C code to be copied over - delimited by %{ braces
Definition of Yacc's value stack union type: %union ...

Token definitions of the form: %token <union_id> namel name2 ...
Used to automatically generate the header file declaring tokens used
by Lex and Yacc both.

Optional precedence declarations for tokens.

The optional definitions of non-terminal symbols:

%type <union_id> namel name2 ...

Generally only used when needing to associate a union type to a
non-terminal.

The starting non-terminal symbol: %start name

E. Austin Notes on Yacc September 23, 2014 4/7

Translation Rules

Form: A : Body ;

Where A is the name of a non-terminal and Body is a (possibly empty) list
of names of non-terminals and terminals both.

Semantic actions can also be embedded before/after any symbol in the
Body.

Non-terminals with multiple rules can be combined into a single form
using the pipe operator:

A : B;
A C;
A : D;
OR
A:B| C| D

E. Austin Notes on Yacc September 23, 2014 5/7

Semantic Actions

Semantic actions are C code fragments enclosed in curly braces.

Also available are a list of pseudo variables:

o $% - The return value of the action.

o $X - The value of the symbol at position X.
The default action for a rule is $$ = $1;.

Non-terminals with multiple rules can be combined into a single form
using the pipe operator:

A : B;
A C;
A : D;
OR
A:B| C]| D
E. Austin Notes on Yacc September 23, 2014

6/7

Useful Notes on Grammars

Yacc deterministically creates a single LALR(1) parser.
When faced with an ambiguous grammar:

o shift /reduce conflicts - Yacc will always shift.

o reduce/reduce conflicts -Yacc will always reduce the first production.

Compiling with the v flag will create a *. outline file with readable
descriptions of the parsing tables and report any conflicts generated from
an ambiguous grammar.

If things are not working as expected, check that you don't have any
conflicts.

E. Austin Notes on Yacc September 23, 2014 7/7

