Errors During Compilation
and Execution —
Background Information

Preprocessor Directives and
Compilation

* ##define <name> <body> - defines a macro,
identified by <name>. During compilation, all
instances of the macro name are replaced by its
<body>.

e ex: #define M_PI1 3.141592653 defines a macro constant
for pi. Everywhere M_Pl is used, the text “M_PI” will be
replaced with the decimal.

* The flag —D<identifier>=<body> can be used to
define macros. Like macros defined in source files,
the body is optional. -D<identifier> will define an
empty macro just like #define <identifier> will.

Preprocessor Directives and
Compilation

* Conditional Compilation

* You can conditionally compile portions of code using
preprocessor directives.

» H#if <expression>, #else, #endif can be used to
conditionally include to be compiled based on the value
of <expression>. #elif can also be used, similar to ‘else
if’, to chain optional blocks.

 #ifdef <identifier> checks if a given macro identifier is
already defined.

 #ifndef <identifier> checks if a given macro identifier is
not already defined.

Preprocessor Directives and
Compilation

e #finclude - used to include source files. The text of
the included file is copied into the current

translation unit.

* Include search path — the set of directories
searched by the compiler to locate included source

files
* Afilename enclosed in ‘<>’ will search through the paths

defined in the include search path (ie #include <string>).

* Afilename enclosed in “” will search in the directory the
current translation unit is in before searching through
the include search path (ie #include “myfile.h”).

Preprocessor Directives and
Compilation

e Default search paths depend on your platform, but
they will include all the headers for system-
provided libraries (like /usr/include,
usr/local/include, etc).

* The flag —| <path to header directory> can be used
to add a directory to the include search path, which
will then be searched when looking for included

files.

Preprocessor Directives and
Compilation

e Header Guards

e Used to prevent multiple inclusion (which would then

lead to many linker errors, mainly errors from multiple
definitions)

* Example:
#ifndef SOME_UNIQUE_NAME
#tdefine SOME_UNIQUE_NAME
// contents of the header file
#endif

Preprocessor Directives and
Compilation

* Example of conditionally compiling code. Include
one source file is on Windows, another if on a
posix-like platform.

#ifdef WIN32
#include <Windows.h>
Helse
#tinclude <unistd.h>
#endif

Preprocessor Directives and
Compilation

* -E: print the output from the preprocessor and halt
compilation.

* This would contain the code as it was after all the #if,
#include, etc were processed.

Preprocessor Directives and
Compilation

* Other useful preprocessor directives:
e #undef: undefine a previously defined macro

* #error <message>: generate a compiler error with a
custom message

o ‘#" will stringify the given token
* ‘## will concat two given tokens
* FILE__ :will expand to the full path of the file

 LINE__:will always be defined as the current line
number

e #pragma once: can be used as an alternative to a header

guard. Supported by all major compilers (GCC version
3.4+)

GCC shared library code-gen flags

 -fpic: emits position independent code. Necessary
for shared libraries.

* -shared: emits a shared library instead of an
executable. This would not look for a ‘main’ as an
entry point, but rather compile the code to be used
in another program.

Linking with GCC

* Linking is the process of creating an executable
from multiple object files (.0) and external libraries

* To perform linking, the compiler invokes a separate
program called a linker (Id on Linux)

* Libraries can be dynamic or static:

e Static (.a files) - Library functions are copied into your
compiled program

* Dynamic (.so files) - Library functions are stored in
separate files and loaded at runtime

Linking with GCC

* To link a library, you must tell the compiler the
name of the library you want to link and where to
look for it

* Linker search path — The set of directories in which
the linker searches for libraries

* The search path includes several locations by
default where system-provided libraries are stored,
for example /usr/lib and /usr/local/lib

* -L path/to/lib/dir — adds the specified path to the
set of directories to search for libraries

Linking with GCC

* -[<library_name> - tells the compiler to link a
particular library

* The linker searches the linker search path for a file
named either lib<library_name>.so (dynamic) or
lib<library_name>.a (static)

* The dynamic library gets preference, unless the
-static flag was passed to the compiler

e Example: -Im links /usr/lib/libm.so

Linking error example

/tmp/ccVMKuR6.0: In function
"main’':linkfail.c:(.text+0xf): undefined reference to
“library function'collect2: error: 1ld returned 1 exit
status

Runtime linking

 When an executable requires a shared library, the
runtime linker is invoked to locate and load that
library

LD LIBRARY_PATH - the list of directories that the
runtime linker searches to find shared libraries.
Same format as PATH. By default includes the
system directories (/usr/lib, /usr/lib/local, etc)

* If a required library can’t be found, the program
will crash

objdump

e objdump is a tool for analyzing compiled
executables, libraries, object files, etc

* -D flag prints a disassembly of a compiled binary

* See the man page for the other available options

