
 1

Text Editors and Using the Debugger

EECS 665 Compiler Construction

 2

Some Common Editors

● Lightweight UI, limited features
● pico, nano

● Heavier UI, limited features
● gedit, kate

● Heavier UI, good features, customizable
● Eclipse, Anjuta

● Lightweight UI, good features, customizable
● emacs, vim (these slides will focus only on vim)

 3

Vim: Modes of Operation

● Command Mode
● Insert Mode
● Visual Mode

Visual

Insert

I, i, A, a, O, o, R, r

Escape

Escape

V, v, <CTRL-v>

Command

 4

Using Vim to Create & Edit a File

● Start a session

> vim start_me.c
● Press 'i' to enter insert mode

● Now you can type any text you want

● 'Esc' to enter command mode

 5

Essential Commands

:e file
– Open and edit a different or new file

:w
– Save any modifications to the current file

:q
– Quit Vim. If you have modifications you do not want to

save, use :q!

:wq
– Write changes and exit the session

 6

Command Mode: Navigation

● Use j, k, l, and h to navigate around the file as
seen below. This may take awhile to get used
to, but is very nice once you have it down. The
arrow keys may also be used in the same
manner.

● For faster page scrolling, use <CTRL-b> and
<CTRL-f> for page up and page down. The
page up and page down keys may also be used
in the same manner.

 7

Insert Mode

● The following commands switch to insert mode

● i – characters inserted just before the cursor position
● I – characters inserted at the beginning of the line
● a – characters inserted just after the cursor position
● A – characters appended to the end of the line
● o – characters inserted in a new line below the cursor
● O – characters inserted in a new line above the cursor
● C – often overlooked, deletes the line after the cursor

position and start inserting characters as this point
● After your done editing a file, press Escape to go back to

command mode, and :w to write the changes

 8

Common Editor Commands

● Cut/copy/paste in command mode:
● dd – cut a line of text
● yy – copy (or “yank”) a line of text
● P/p – paste a line of text above/below the cursor

position

● Commands in Vim can be applied to multiple
lines by typing the number of lines you want
before the command:
● '12dd' cuts 12 lines of text
● '4j' moves the cursor down 4 lines

 9

Searching

/word – search for occurrences of word
– Cursor jumps to the next occurrence of word
– n/N – jump to the next/previous occurrence of word
– ?word – search initially jumps to previous occurrence of

word

:set ic – ignore uppercase and lowercase in
search (the default is set to not ignore the case)

:nohls to turn off highlighting from last search

 10

Undo/Redo & Find/Replace

● Undo and redo changes

● u – undo the last action

● U – undo all the latest changes that were made to the current line

● <CTRL-r> – redo

● Find and replace

● :rs/search_for/replace_with/a

● The range (r) can be nothing (work on current line only), a number (work
on the line whose number you give), and % (work on the whole file)

● Arguments (a) can be g (replace all occurrences in the line, without this
Vim will replace only the first occurrence in each line), i (ignore case for
the search pattern), I (don't ignore case), and c (confirm each
substitution)

 11

Split Screens

● Vim allows you to edit multiple files in one
session
● <CTRL-w> v to split the screen vertically
● <CTRL-w> s to split the screen horizontally
● <CTRL-w> w to switch to the other screen

 12

Vim Resources
● Vim Tips Wiki:

● http://vim.wikia.com/wiki/Main_Page

● Vim Cookbook
● http://www.oualline.com/vim/vim-cook.html

● For everything else, just use Google.

http://vim.wikia.com/wiki/Main_Page
http://www.oualline.com/vim/vim-cook.html

 13

Debugger

● A powerful tool that supports examination of
your program during execution

● Idea behind debugging programs
● Creates additional symbol tables that permit

tracking program behavior and relating it back
to the source files

● Some common debuggers for UNIX/Linux
● gdb, ddd, sdb, dbx, etc.

 14

GDB

● gdb is a tool for debugging C & C++ code
● You can run a program, stop it on any line, and

examine various types of information like values
of variables, sequence of function calls &
change values of variables (during execution)

● You can call a function and trace the execution
● gdb is most effective when it is debugging a

program that has debugging symbols
● Code must be compiled with the -g option

> gcc -g -o program file.c

 15

Invoking and Quiting gdb

● Invoking a gdb session is easy

> gdb

● Specify the program you would like to debug
when starting a gdb session

> gdb ./program

● Type quit (q) or <CTRL-d> to exit your session

 16

Running a Program in gdb

● Use the run command to start your program
under gdb

> gdb ./program

(gdb) run (r)

● Specify the arguments to give your program as
the arguments of the run command

(gdb) r arg1 arg2 ...

 17

Breakpoints

● One reason the debugger is so powerful is because it allows you to stop your
program before it terminates. If you encounter an error, the debugger allows you stop
execution before the error occurs and investigate

● break (b)

● Sets a breakpoint in program execution

● tbreak (tb) sets a temporary breakpoint that exists until it is hit for the first time

● Breakpoint syntax

● b line-number

● b function-name

● b line-or-function if condition

● b filename:line-number

● info breakpoints – gives information on all active breakpoints

● delete (d) breakpoint-number

● Deletes the specified breakpoint number (e.g., d 1)

 18

Watchpoints

● Set a watchpoint to stop execution whenever the value
of an expression changes, without having to predict a
particular place where this may happen

● watch expr – set a watchpoint for an expression. gdb
will break when expr is written into by the program and
its value changes

● rwatch expr – set a watchpoint that will break when
expr is read by the program

● awatch expr – set a watchpoint that will break when
expr is either read or written into by the program

● info watchpoints – the same as info break

 19

Control Flow

● Navigating the program is also very useful

● continue (c) – continue until the next breakpoint is
reached, the program terminates, or any errors occur

● next (n) – execute one instruction, step over function calls

● step (s) – execute one instruction, step into function calls

● kill (k) – kills the program being debugged (does not exit
gdb – preserves everything else from the session, i.e.,
breakpoints)

 20

Examining the Stack

● The call stack is divided up into contiguous pieces
called stack frames; each frame is the data associated
with one call to one function

● The frame contains the arguments given to the
function, the function's local variables, and the address
at which the function is executing

● Each time a function returns, the frame for that
function invocation is eliminated and you can no longer
see the information for that frame

● info args – prints the arguments passed into the
current frame

● info locals – prints the local arguments

 21

Examining the Stack (cont.)

● A backtrace is a summary of how your program got to
where it is. The current frame will be displayed at level 0,
followed by its caller, and so on

● backtrace (bt) – prints a backtrace of the entire stack

● backtrace (bt) n – prints only the innermost n frames

● up n – select the frame n levels up in the call stack
(towards main)

● down n – select the frame n levels down in the call stack

● After you select a new frame, use info as described in the
previous slide to display information about the frame

 22

Examining Source Files

● To print lines from a source file, use the list (l)
command. By default, 10 lines are printed.

● Variations of the list command
● list (l) line-number – prints lines centered around

line number line-number in the current source file
● list function – prints lines centered around the

beginning of function function
● list first, last – prints lines from first to last

 23

Examining Data

● The most common way of examining data in
gdb is the print command. It evaluates and
prints the value of an expression

● print (p) expr – prints the value of some variable
● whatis expr – prints the type of expr
● You can also use the call command for any

functions linked to your program
● call function – allows you to execute functions in the

middle of execution

 24

GDB References

● The Unix manual is a good quick reference for
common GDB commands:

> man gdb
● While running GDB, help will give you any information

you need for any command:

(gdb) help (h) command
● The official GDB documentation for users is located at:

https://sourceware.org/gdb/current/onlinedocs/gdb/ind
ex.html

● And finally, Google is always a good source

https://sourceware.org/gdb/current/onlinedocs/gdb/index.html
https://sourceware.org/gdb/current/onlinedocs/gdb/index.html

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24

